Multi Drone Task Allocation

Student: Takudzwa Chakanyuka Supervisor: Prof Antoine Bagula Co-Supervisor: Mr Mehrdad Ghaziasgar

Overview

- Project Background
- Motivation
- Our Application
- User Requirements and Requirements Analysis
- Drone Monitoring
- Testing
- Tools

Background

- Multi drone task allocation (MDTA) deals with the problem of coordinating a team of drones and assigning them tasks
- This includes the following subtasks:
 - Target search
 - Task allocation
 - Drone monitoring

Project Motivation

Our Application of Drones

Data Collection

Surveillance

Data mule

User Requirements and Requirements Analysis

> Path Planning:

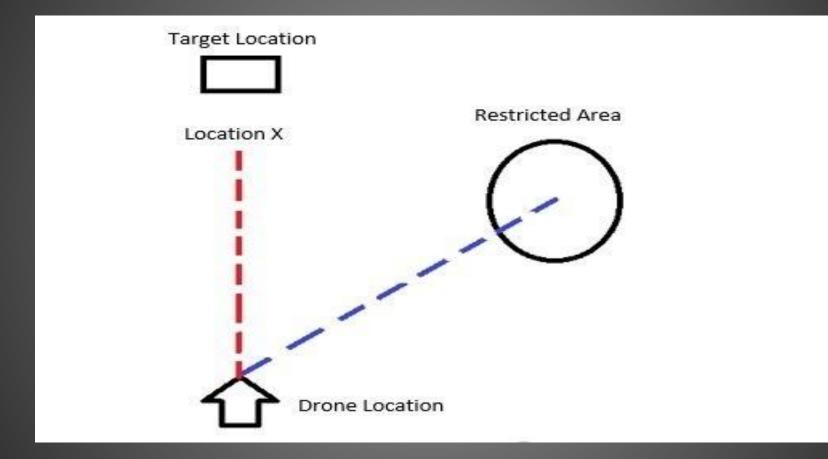
- Target locations
- Restricted Areas

Task allocation

- Avoid task repetition
- **Drone monitoring**:
 - Collision avoidance
 - Restricted area avoidance
 - Power Monitoring

Drone Monitoring

Collision avoidance


- Track distance between the two drones
- If the distance is increasing, the drones won't collide
- If distance between drones is 2.5m or less, they will most likely collide
- Power Monitoring
 - Retrieve power level
 - Task reconfiguration

Drone Monitoring

Restricted area avoidance

- Calculate distance (d) to restricted area
- Move distance d in the direction of target area
- If the point we end up at is with the radius of the restricted area,
 - Move the drone to a location (L) outer of the radius of the restricted area first
 - Move the drone from the L to the target coordinate

Drone Monitoring

Testing

Travelling salesman performance

Number of inputs	Dynamic Travelling salesman	Greedy Travelling Salesman
5	0.000132s	6.69956207275e-05s
10	0.015s	0.00012s
15	1.324s	0.00022s
20	1 min 36s	0.00036s
25	stopped	0.000481s
50	stopped	0.0020s
100	stopped	0.0080s

Testing

Forward movement

Input distance (meters)	Actual distance travelled (meters)	Percentage Error
20	18.2	9
19	19.7	3.7
18	19.5	8.3
17	16.8	1.1
16	18.1	13.1
15	13.7	8.7
14	15.3	9.3
13	15.1	16.2
12	12.6	5.0
11	11.2	1.8
10	10.4	4.0
	2 2 A	0 K 0

Testing

- Destructive and stress testing
 - Range testing
 - Fault injection
- Integration testing
 - Single Thread testing
 - Master Thread testing

Tools

- Parrot Bebop
- Parrot 2.0
- Wasp Mote
- OpenCv
- Python
- EDIMAX nano USB Wi-fi Adapter

References

- R. Zlot, A. (tony Stentz, M. B. Dias, and S. Thayer, "Multi-robot exploration controlled by a market economy," in *Multi-robot exploration controlled* by a market economy, 2002, pp. 3016–3023.
- [2] X. Ding, A. Rahmani, and M. Egerstedt, "Optimal multi-uav convoy protection," in Robot Communication and Coordination, 2009. ROBOCOMM'09. Second International Conference on. IEEE, 2009, pp. 1–6.
- [3] N. Nigam and I. Kroo, "Persistent surveillance using multiple unmanned air vehicles," in Aerospace Conference, 2008 IEEE. IEEE, 2008, pp. 1–14.
- [4] C. T. Cunningham and R. S. Roberts, "An adaptive path planning algorithm for cooperating unmanned air vehicles," in *ICRA*, 2001, pp. 3981–3986.
- [5] W. Zhu and S. Choi, "An auction-based approach with closed-loop bid adjustment to dynamic task allocation in robot teams," in *Proceedings of the* world congress on engineering, vol. 2. IAENG., 2011, pp. 1061–1066.
- [6] M. M. Lehata, "Autonomous drone flight," Published as partial fulfilment of the requirements for the degree of Baccalaureus Scientae (Honours) Computer Science University of the Western Cape, 11 2013.

